Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mostafa M. Amini, ${ }^{\text {a }}$ Ayoob
Mahmoodi, ${ }^{\text {a }}$ Mehdi Mirzaee ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ Department of Chemistry, Shahid Beheshti University, Tehran, Iran, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=163 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.082$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-isopropoxy-bis[(8-hydroxyquinolinolato)diisopropoxyzirconium(IV)]

Each Zr atom in the dimeric title compound, $\left[\mathrm{Zr}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{6}\right]$, is chelated by the oxinate group; the two Zr atoms are linked through two isopropoxy bridges. The molecule lies on an inversion center and the Zr atoms exist in octahedral environments.

Comment

The reaction of titanium tetraalkoxides with 8-hydroxyquinoline affords $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{n}(\mathrm{OR})_{4-n} \mathrm{Ti}$, with $n=1$ for the ethoxide (Amini et al., 2004) and $n=2$ for the isopropoxide (Zeng et al., 2002). As the ethoxide exists as a dimeric compound whereas the isopropoxide is only monomeric, steric factors probably account for the difference in the manner in which the oxinate group replaces the alkoxide group. On the basis of steric factors, the analogous reaction with zirconium tetraisopropoxide should yield $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}(\mathrm{OR})_{2} \mathrm{Zr}$, but the reaction yielded instead dimeric $\left[\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{3} \mathrm{Zr}\right]_{2}$, (I) (Fig. 1). Evidently, the molecule is able to accommodate the isopropyl unit at the bridging atom $[\mathrm{Zr}-\mathrm{O}=2.154$ (2) and 2.213 (2) \AA] owing to the longer $\mathrm{Zr}-\mathrm{O}$ bonds, as the Zr atom is a much larger atom than a Ti atom. The molecule lies on an inversion center and the Zr atoms exist in octahedral environments.

(I)

Experimental

Manipulations were performed under nitrogen using standard Schlenk techniques. Zirconium(IV) tetraisopropoxide was prepared from zirconium tetrachloride (Fluka) according to a reported procedure (Bradley \& Wardlaw, 1950) and purified by vacuum distillation. 8-Hydroxyquinoline ($0.61 \mathrm{~g}, 4.26 \mathrm{mmol}$) was reacted with this reagent $(1.4 \mathrm{~g}, 4.26 \mathrm{mmol})$ in toluene $(12 \mathrm{ml})$. The mixture was stirred for a day and the solvent then removed under reduced pressure to furnish a yellow solid. The solid was crystallized from di-chloromethane-hexane (5:1) to give orange crystals (m.p. 456-457 $\mathrm{K})$. UV in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 254\left(\pi \rightarrow \pi^{*}\right), 375\left(n \rightarrow \pi^{*}\right) \mathrm{nm}$. IR: $1572(\mathrm{C}=\mathrm{C}$, $\mathrm{C}=\mathrm{N}), 1272(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}: 1.2\left(\mathrm{CH}_{3}\right.$, doublet $)$, $4.0(\mathrm{CH}$, multiplet), 6.5-8.5 (aromatic H atoms) p.p.m. MS: 678 [($M-$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)\right]^{+}$.

Received 24 June 2004 Accepted 28 June 2004 Online 9 July 2004

Crystal data

$\left[\mathrm{Zr}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{6}\right]$
$M_{r}=825.25$
Monoclinic, C2/c
$a=19.851$ (1) A
$b=12.890$ (1) \AA
$c=16.301$ (1) \AA
$\beta=105.518$ (1) ${ }^{\circ}$
$V=4018.8$ (4) \AA^{3}
$Z=4$
Data collection
Siemens $P 4 / C C D$ area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.725, T_{\text {max }}=0.946$
24817 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.082$
$S=1.02$
4116 reflections
217 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zr} 1-\mathrm{O} 1$	$2.087(2)$	$\mathrm{Zr} 1-\mathrm{O} 3$	$1.938(2)$
$\mathrm{Zr} 1-\mathrm{O} 2$	$2.213(2)$	$\mathrm{Zr} 1-\mathrm{O} 4$	$1.935(2)$
$\mathrm{Zr} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.154(2)$	$\mathrm{Zr} 1-\mathrm{N} 1$	$2.440(2)$
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 2$	$91.25(7)$	$\mathrm{O} 2-\mathrm{Zr} 1-\mathrm{N} 1$	$85.98(6)$
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 2^{\mathrm{i}}$	$150.82(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 3$	$105.97(7)$
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 3$	$98.70(7)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 4$	$93.20(7)$
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 4$	$98.18(8)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{N} 1$	$84.02(6)$
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{N} 1$	$70.84(6)$	$\mathrm{O} 3-\mathrm{Zr} 1-\mathrm{O} 4$	$98.96(8)$
$\mathrm{O} 2-\mathrm{Zr} 1-\mathrm{O} 2^{\mathrm{i}}$	$71.92(6)$	$\mathrm{O} 3-\mathrm{Zr} 1-\mathrm{N} 1$	$169.54(7)$
$\mathrm{O} 2-\mathrm{Zr} 1-\mathrm{O} 3$	$94.10(7)$	$\mathrm{O} 4-\mathrm{Zr} 1-\mathrm{N} 1$	$83.28(7)$
$\mathrm{O} 2-\mathrm{Zr} 1-\mathrm{O} 4$	$162.50(7)$	$\mathrm{Zr} 1-\mathrm{O} 2-\mathrm{Zr} 1^{\mathrm{i}}$	$108.08(6)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.
H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.95 \AA$ for the aromatic H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; 1.00 \AA$ for the methine H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; 0.98 \AA$ for the methyl H atoms and $\left.\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }} \mathrm{C}\right)\right]$ and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
$D_{x}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6641
reflections
$\theta=2.6-26.4^{\circ}$
$\mu=0.57 \mathrm{~mm}^{-1}$
$T=163$ (2) K
Block, orange
$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$

4116 independent reflections
3355 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-24 \rightarrow 24$
$k=-16 \rightarrow 8$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0425 P)^{2}\right. \\
&+4.6465 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
ORTEPII (Johnson, 1976) plot of (I); displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry code (i) as in Table 1.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements and the VicePresident's Office for Research Affairs of Shahid Beheshti University and the University of Malaya for supporting this work.

References

Amini, M. M., Mirzaee, M. \& Ng, S. W. (2004). Acta Cryst. E60, m145-m146. Bradley, D. C. \& Wardlaw, W. (1950). Nature (London), 165, 75-76.
Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S. \& Cheng, C. P. (2002). Polyhedron, 21, 1081-1087.

